Copied to
clipboard

G = C42.154D10order 320 = 26·5

154th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.154D10, C10.302- 1+4, C20⋊Q837C2, C4⋊C4.210D10, C42.C210D5, (C4×Dic10)⋊49C2, D10⋊Q8.3C2, C4.Dic1036C2, C422D5.1C2, Dic53Q837C2, (C2×C20).602C23, (C2×C10).240C24, (C4×C20).199C22, Dic5.19(C4○D4), Dic5.Q835C2, C4⋊Dic5.316C22, C22.261(C23×D5), D10⋊C4.42C22, C54(C22.35C24), (C2×Dic5).270C23, (C4×Dic5).236C22, (C22×D5).105C23, C2.59(D4.10D10), C2.31(Q8.10D10), (C2×Dic10).260C22, C10.D4.162C22, C2.91(D5×C4○D4), C4⋊C4⋊D5.2C2, C4⋊C47D5.13C2, C10.202(C2×C4○D4), (C5×C42.C2)⋊13C2, (C2×C4×D5).139C22, (C5×C4⋊C4).195C22, (C2×C4).205(C22×D5), SmallGroup(320,1368)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.154D10
C1C5C10C2×C10C22×D5C2×C4×D5D10⋊Q8 — C42.154D10
C5C2×C10 — C42.154D10
C1C22C42.C2

Generators and relations for C42.154D10
 G = < a,b,c,d | a4=b4=1, c10=d2=a2, ab=ba, cac-1=a-1b2, dad-1=a-1, cbc-1=b-1, dbd-1=a2b, dcd-1=c9 >

Subgroups: 590 in 192 conjugacy classes, 93 normal (91 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, Q8, C23, D5, C10, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×Q8, Dic5, Dic5, C20, D10, C2×C10, C42⋊C2, C4×Q8, C22⋊Q8, C42.C2, C42.C2, C422C2, C4⋊Q8, Dic10, C4×D5, C2×Dic5, C2×C20, C22×D5, C22.35C24, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C4×C20, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C4×Dic10, C422D5, Dic53Q8, C20⋊Q8, Dic5.Q8, C4.Dic10, C4⋊C47D5, D10⋊Q8, C4⋊C4⋊D5, C5×C42.C2, C42.154D10
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2- 1+4, C22×D5, C22.35C24, C23×D5, Q8.10D10, D5×C4○D4, D4.10D10, C42.154D10

Smallest permutation representation of C42.154D10
On 160 points
Generators in S160
(1 87 11 97)(2 23 12 33)(3 89 13 99)(4 25 14 35)(5 91 15 81)(6 27 16 37)(7 93 17 83)(8 29 18 39)(9 95 19 85)(10 31 20 21)(22 72 32 62)(24 74 34 64)(26 76 36 66)(28 78 38 68)(30 80 40 70)(41 137 51 127)(42 142 52 152)(43 139 53 129)(44 144 54 154)(45 121 55 131)(46 146 56 156)(47 123 57 133)(48 148 58 158)(49 125 59 135)(50 150 60 160)(61 86 71 96)(63 88 73 98)(65 90 75 100)(67 92 77 82)(69 94 79 84)(101 147 111 157)(102 124 112 134)(103 149 113 159)(104 126 114 136)(105 151 115 141)(106 128 116 138)(107 153 117 143)(108 130 118 140)(109 155 119 145)(110 132 120 122)
(1 109 72 45)(2 46 73 110)(3 111 74 47)(4 48 75 112)(5 113 76 49)(6 50 77 114)(7 115 78 51)(8 52 79 116)(9 117 80 53)(10 54 61 118)(11 119 62 55)(12 56 63 120)(13 101 64 57)(14 58 65 102)(15 103 66 59)(16 60 67 104)(17 105 68 41)(18 42 69 106)(19 107 70 43)(20 44 71 108)(21 144 96 130)(22 131 97 145)(23 146 98 132)(24 133 99 147)(25 148 100 134)(26 135 81 149)(27 150 82 136)(28 137 83 151)(29 152 84 138)(30 139 85 153)(31 154 86 140)(32 121 87 155)(33 156 88 122)(34 123 89 157)(35 158 90 124)(36 125 91 159)(37 160 92 126)(38 127 93 141)(39 142 94 128)(40 129 95 143)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 97 31 87)(22 86 32 96)(23 95 33 85)(24 84 34 94)(25 93 35 83)(26 82 36 92)(27 91 37 81)(28 100 38 90)(29 89 39 99)(30 98 40 88)(41 112 51 102)(42 101 52 111)(43 110 53 120)(44 119 54 109)(45 108 55 118)(46 117 56 107)(47 106 57 116)(48 115 58 105)(49 104 59 114)(50 113 60 103)(61 62 71 72)(63 80 73 70)(64 69 74 79)(65 78 75 68)(66 67 76 77)(121 140 131 130)(122 129 132 139)(123 138 133 128)(124 127 134 137)(125 136 135 126)(141 148 151 158)(142 157 152 147)(143 146 153 156)(144 155 154 145)(149 160 159 150)

G:=sub<Sym(160)| (1,87,11,97)(2,23,12,33)(3,89,13,99)(4,25,14,35)(5,91,15,81)(6,27,16,37)(7,93,17,83)(8,29,18,39)(9,95,19,85)(10,31,20,21)(22,72,32,62)(24,74,34,64)(26,76,36,66)(28,78,38,68)(30,80,40,70)(41,137,51,127)(42,142,52,152)(43,139,53,129)(44,144,54,154)(45,121,55,131)(46,146,56,156)(47,123,57,133)(48,148,58,158)(49,125,59,135)(50,150,60,160)(61,86,71,96)(63,88,73,98)(65,90,75,100)(67,92,77,82)(69,94,79,84)(101,147,111,157)(102,124,112,134)(103,149,113,159)(104,126,114,136)(105,151,115,141)(106,128,116,138)(107,153,117,143)(108,130,118,140)(109,155,119,145)(110,132,120,122), (1,109,72,45)(2,46,73,110)(3,111,74,47)(4,48,75,112)(5,113,76,49)(6,50,77,114)(7,115,78,51)(8,52,79,116)(9,117,80,53)(10,54,61,118)(11,119,62,55)(12,56,63,120)(13,101,64,57)(14,58,65,102)(15,103,66,59)(16,60,67,104)(17,105,68,41)(18,42,69,106)(19,107,70,43)(20,44,71,108)(21,144,96,130)(22,131,97,145)(23,146,98,132)(24,133,99,147)(25,148,100,134)(26,135,81,149)(27,150,82,136)(28,137,83,151)(29,152,84,138)(30,139,85,153)(31,154,86,140)(32,121,87,155)(33,156,88,122)(34,123,89,157)(35,158,90,124)(36,125,91,159)(37,160,92,126)(38,127,93,141)(39,142,94,128)(40,129,95,143), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,97,31,87)(22,86,32,96)(23,95,33,85)(24,84,34,94)(25,93,35,83)(26,82,36,92)(27,91,37,81)(28,100,38,90)(29,89,39,99)(30,98,40,88)(41,112,51,102)(42,101,52,111)(43,110,53,120)(44,119,54,109)(45,108,55,118)(46,117,56,107)(47,106,57,116)(48,115,58,105)(49,104,59,114)(50,113,60,103)(61,62,71,72)(63,80,73,70)(64,69,74,79)(65,78,75,68)(66,67,76,77)(121,140,131,130)(122,129,132,139)(123,138,133,128)(124,127,134,137)(125,136,135,126)(141,148,151,158)(142,157,152,147)(143,146,153,156)(144,155,154,145)(149,160,159,150)>;

G:=Group( (1,87,11,97)(2,23,12,33)(3,89,13,99)(4,25,14,35)(5,91,15,81)(6,27,16,37)(7,93,17,83)(8,29,18,39)(9,95,19,85)(10,31,20,21)(22,72,32,62)(24,74,34,64)(26,76,36,66)(28,78,38,68)(30,80,40,70)(41,137,51,127)(42,142,52,152)(43,139,53,129)(44,144,54,154)(45,121,55,131)(46,146,56,156)(47,123,57,133)(48,148,58,158)(49,125,59,135)(50,150,60,160)(61,86,71,96)(63,88,73,98)(65,90,75,100)(67,92,77,82)(69,94,79,84)(101,147,111,157)(102,124,112,134)(103,149,113,159)(104,126,114,136)(105,151,115,141)(106,128,116,138)(107,153,117,143)(108,130,118,140)(109,155,119,145)(110,132,120,122), (1,109,72,45)(2,46,73,110)(3,111,74,47)(4,48,75,112)(5,113,76,49)(6,50,77,114)(7,115,78,51)(8,52,79,116)(9,117,80,53)(10,54,61,118)(11,119,62,55)(12,56,63,120)(13,101,64,57)(14,58,65,102)(15,103,66,59)(16,60,67,104)(17,105,68,41)(18,42,69,106)(19,107,70,43)(20,44,71,108)(21,144,96,130)(22,131,97,145)(23,146,98,132)(24,133,99,147)(25,148,100,134)(26,135,81,149)(27,150,82,136)(28,137,83,151)(29,152,84,138)(30,139,85,153)(31,154,86,140)(32,121,87,155)(33,156,88,122)(34,123,89,157)(35,158,90,124)(36,125,91,159)(37,160,92,126)(38,127,93,141)(39,142,94,128)(40,129,95,143), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,97,31,87)(22,86,32,96)(23,95,33,85)(24,84,34,94)(25,93,35,83)(26,82,36,92)(27,91,37,81)(28,100,38,90)(29,89,39,99)(30,98,40,88)(41,112,51,102)(42,101,52,111)(43,110,53,120)(44,119,54,109)(45,108,55,118)(46,117,56,107)(47,106,57,116)(48,115,58,105)(49,104,59,114)(50,113,60,103)(61,62,71,72)(63,80,73,70)(64,69,74,79)(65,78,75,68)(66,67,76,77)(121,140,131,130)(122,129,132,139)(123,138,133,128)(124,127,134,137)(125,136,135,126)(141,148,151,158)(142,157,152,147)(143,146,153,156)(144,155,154,145)(149,160,159,150) );

G=PermutationGroup([[(1,87,11,97),(2,23,12,33),(3,89,13,99),(4,25,14,35),(5,91,15,81),(6,27,16,37),(7,93,17,83),(8,29,18,39),(9,95,19,85),(10,31,20,21),(22,72,32,62),(24,74,34,64),(26,76,36,66),(28,78,38,68),(30,80,40,70),(41,137,51,127),(42,142,52,152),(43,139,53,129),(44,144,54,154),(45,121,55,131),(46,146,56,156),(47,123,57,133),(48,148,58,158),(49,125,59,135),(50,150,60,160),(61,86,71,96),(63,88,73,98),(65,90,75,100),(67,92,77,82),(69,94,79,84),(101,147,111,157),(102,124,112,134),(103,149,113,159),(104,126,114,136),(105,151,115,141),(106,128,116,138),(107,153,117,143),(108,130,118,140),(109,155,119,145),(110,132,120,122)], [(1,109,72,45),(2,46,73,110),(3,111,74,47),(4,48,75,112),(5,113,76,49),(6,50,77,114),(7,115,78,51),(8,52,79,116),(9,117,80,53),(10,54,61,118),(11,119,62,55),(12,56,63,120),(13,101,64,57),(14,58,65,102),(15,103,66,59),(16,60,67,104),(17,105,68,41),(18,42,69,106),(19,107,70,43),(20,44,71,108),(21,144,96,130),(22,131,97,145),(23,146,98,132),(24,133,99,147),(25,148,100,134),(26,135,81,149),(27,150,82,136),(28,137,83,151),(29,152,84,138),(30,139,85,153),(31,154,86,140),(32,121,87,155),(33,156,88,122),(34,123,89,157),(35,158,90,124),(36,125,91,159),(37,160,92,126),(38,127,93,141),(39,142,94,128),(40,129,95,143)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,97,31,87),(22,86,32,96),(23,95,33,85),(24,84,34,94),(25,93,35,83),(26,82,36,92),(27,91,37,81),(28,100,38,90),(29,89,39,99),(30,98,40,88),(41,112,51,102),(42,101,52,111),(43,110,53,120),(44,119,54,109),(45,108,55,118),(46,117,56,107),(47,106,57,116),(48,115,58,105),(49,104,59,114),(50,113,60,103),(61,62,71,72),(63,80,73,70),(64,69,74,79),(65,78,75,68),(66,67,76,77),(121,140,131,130),(122,129,132,139),(123,138,133,128),(124,127,134,137),(125,136,135,126),(141,148,151,158),(142,157,152,147),(143,146,153,156),(144,155,154,145),(149,160,159,150)]])

50 conjugacy classes

class 1 2A2B2C2D4A4B4C···4H4I4J4K4L4M···4Q5A5B10A···10F20A···20L20M···20T
order12222444···444444···45510···1020···2020···20
size111120224···41010101020···20222···24···48···8

50 irreducible representations

dim1111111111122224444
type++++++++++++++--
imageC1C2C2C2C2C2C2C2C2C2C2D5C4○D4D10D102- 1+4Q8.10D10D5×C4○D4D4.10D10
kernelC42.154D10C4×Dic10C422D5Dic53Q8C20⋊Q8Dic5.Q8C4.Dic10C4⋊C47D5D10⋊Q8C4⋊C4⋊D5C5×C42.C2C42.C2Dic5C42C4⋊C4C10C2C2C2
# reps11111311231242122444

Matrix representation of C42.154D10 in GL8(𝔽41)

902300000
090230000
903200000
090320000
000037251
00003192322
000072134
00004012618
,
103900000
010390000
104000000
010400000
000017402221
0000124127
000000185
000000123
,
12928130000
121128240000
151540120000
262329300000
000089624
000016323311
0000356331
00002733219
,
12928130000
354017130000
27142910000
121411120000
00002732215
00003892430
00003435112
0000182335

G:=sub<GL(8,GF(41))| [9,0,9,0,0,0,0,0,0,9,0,9,0,0,0,0,23,0,32,0,0,0,0,0,0,23,0,32,0,0,0,0,0,0,0,0,3,3,7,40,0,0,0,0,7,19,2,1,0,0,0,0,25,23,1,26,0,0,0,0,1,22,34,18],[1,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,39,0,40,0,0,0,0,0,0,39,0,40,0,0,0,0,0,0,0,0,17,1,0,0,0,0,0,0,40,24,0,0,0,0,0,0,22,12,18,1,0,0,0,0,21,7,5,23],[1,12,15,26,0,0,0,0,29,11,15,23,0,0,0,0,28,28,40,29,0,0,0,0,13,24,12,30,0,0,0,0,0,0,0,0,8,16,35,27,0,0,0,0,9,32,6,33,0,0,0,0,6,33,33,21,0,0,0,0,24,11,1,9],[1,35,27,12,0,0,0,0,29,40,14,14,0,0,0,0,28,17,29,11,0,0,0,0,13,13,1,12,0,0,0,0,0,0,0,0,27,38,34,1,0,0,0,0,32,9,35,8,0,0,0,0,21,24,11,23,0,0,0,0,5,30,2,35] >;

C42.154D10 in GAP, Magma, Sage, TeX

C_4^2._{154}D_{10}
% in TeX

G:=Group("C4^2.154D10");
// GroupNames label

G:=SmallGroup(320,1368);
// by ID

G=gap.SmallGroup(320,1368);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,758,555,100,1571,570,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=a^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽